Translation of ferritin light and heavy subunit mRNAs is regulated by intracellular chelatable iron levels in rat hepatoma cells.

نویسندگان

  • J Rogers
  • H Munro
چکیده

Acute administration of iron to rats has been previously shown to induce liver ferritin synthesis by increasing the translation of inactive cytoplasmic ferritin mRNAs for both heavy (H) and light (L) subunits by mobilizing them onto polyribosomes. In this report rat hepatoma cells in culture are used to explore the relationship of this response to intracellular iron levels. After adding iron as ferric ammonium citrate to the medium, latent ferritin H- and L-mRNAs were extensively transferred to polyribosomes, accompanied by increased uptake of [35S]methionine into ferritin protein. Because total cellular levels of L- and H-mRNA were not significantly changed by exposure to iron, the increased ferritin mRNAs on polyribosomes most probably come from an inactive cytoplasmic pool, consistent with the inability of actinomycin-D and of cordycepin to inhibit iron-induced ferritin synthesis. When deferoxamine mesylate, an intracellular iron chelator, was added after the addition of iron to the medium, ferritin mRNA on the polyribosomes was reduced, while the free messenger pool increased, and ferritin synthesis diminished. In contrast, the extracellular iron chelator diethylenetriaminepentaacetic acid failed to inhibit the induction of ferritin protein synthesis. Addition of iron in the form of hemin also caused translocation of mRNA to polyribosomes, a response that could be similarly quenched by deferoxamine. Because hemin does not release chelatable iron extracellularly, we conclude that the level of chelatable iron within the cell has a regulatory role in ferritin synthesis through redistribution of the messenger RNAs between the free mRNA pool and the polyribosomes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple post-transcriptional regulatory mechanisms in ferritin gene expression.

We have investigated the mechanisms involved in the regulation of ferritin biosynthesis in K562 human erythroleukemia cells during prolonged exposure to iron. We show that, upon addition of hemin (an efficient iron donor) to the cell culture, the rate of ferritin biosynthesis reaches a maximum after a few hours and then decreases. During a 24-hr incubation with the iron donor the concentrations...

متن کامل

Differential regulation of IRP1 and IRP2 by nitric oxide in rat hepatoma cells.

Iron-regulatory proteins (IRP1 and IRP2) are RNA-binding proteins that bind to stem-loop structures known as iron-responsive elements (IREs). IREs are located in the 5'- or 3'-untranslated regions (UTRs) of specific mRNAs that encode proteins involved in iron homeostasis. The binding of IRPs to 5' IREs represses translation of the mRNA, whereas the binding of IRPs to 3' IREs stabilizes the mRNA...

متن کامل

Both subunits of rat liver ferritin are regulated at a translational level by iron induction.

A few hours after administering iron to rats, liver ferritin synthesis increases several fold. However, Northern blot analysis with cDNA probes for ferritin light (L) and heavy (H) subunit mRNAs failed to show an increase in total population of either messenger. Cytoplasmic distribution of ferritin messages was therefore investigated in control and iron administered rats killed at 3.5 hours. Th...

متن کامل

Increased ferritin gene expression is associated with increased ribonucleotide reductase gene expression and the establishment of hydroxyurea resistance in mammalian cells.

In the present study, we show that hydroxyurea-inactivated ribonucleotide reductase protein M2 has a destabilized iron center, which readily releases iron. In addition, evidence is presented which indicates that single or multistep selection for hydroxyurea resistance, in a variety of mammalian cell lines, leads to alterations in the expression of the gene for the iron storage protein, ferritin...

متن کامل

Repression of the heavy ferritin chain increases the labile iron pool of human K562 cells.

The role of ferritin in the modulation of the labile iron pool was examined by repressing the heavy subunit of ferritin in K562 cells transfected with an antisense construct. Repression of the heavy ferritin subunit evoked an increase in the chemical levels and pro-oxidant activity of the labile iron pool and, in turn, caused a reduced expression of transferrin receptors and increased expressio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 84 8  شماره 

صفحات  -

تاریخ انتشار 1987